Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.605
Filtrar
1.
Biosci Biotechnol Biochem ; 88(5): 529-537, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38509025

RESUMO

Four ethanol fractionated crude extracts (EFCEs [A-D]) purified from the leaves of Cinnamomum macrostemon Hayata were screened for antioxidative effects and mitochondrial function in HaCaT cells. The higher cell viability indicated that EFCE C was mildly toxic. Under the treatment of 50 ng/mL EFCE C, the hydrogen peroxide (H2O2)-induced cytosolic and mitochondrial reactive oxygen species levels were reduced as well as the H2O2-impaired cell viability, mitochondrial membrane potential (MMP), ATP production, and mitochondrial mass. The conversion of globular mitochondria to tubular mitochondria is coincident with EFCE C-restored mitochondrial function. The mitophagy activator rapamycin showed similar effects to EFCE C in recovering the H2O2-impaired cell viability, MMP, ATP production, mitochondrial mass, and also mitophagic proteins such as PINK1, Parkin, LC3 II, and biogenesis protein PGC-1α. We thereby propose the application of EFCE C in the prevention of oxidative stress in skin cells.


Assuntos
Sobrevivência Celular , Cinnamomum , Peróxido de Hidrogênio , Queratinócitos , Potencial da Membrana Mitocondrial , Mitocôndrias , Mitofagia , Estresse Oxidativo , Extratos Vegetais , Espécies Reativas de Oxigênio , Humanos , Mitofagia/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/citologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cinnamomum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Folhas de Planta/química , Antioxidantes/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Sirolimo/farmacologia , Células HaCaT , Proteínas Quinases/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
2.
Biomed Pharmacother ; 171: 116127, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198951

RESUMO

The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.


Assuntos
Epóxido Hidrolases , Inflamação , Queratinócitos , Ácido Linoleico , Animais , Camundongos , Proliferação de Células , Compostos de Epóxi , Queratinócitos/citologia , Queratinócitos/enzimologia , Leucotrieno B4 , Ácido Linoleico/metabolismo
3.
J Immunol ; 212(2): 302-316, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38019129

RESUMO

Immune cell-derived IL-17A is one of the key pathogenic cytokines in psoriasis, an immunometabolic disorder. Although IL-17A is an established regulator of cutaneous immune cell biology, its functional and metabolic effects on nonimmune cells of the skin, particularly keratinocytes, have not been comprehensively explored. Using multiomics profiling and systems biology-based approaches, we systematically uncover significant roles for IL-17A in the metabolic reprogramming of human primary keratinocytes (HPKs). High-throughput liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy revealed IL-17A-dependent regulation of multiple HPK proteins and metabolites of carbohydrate and lipid metabolism. Systems-level MitoCore modeling using flux-balance analysis identified IL-17A-mediated increases in HPK glycolysis, glutaminolysis, and lipid uptake, which were validated using biochemical cell-based assays and stable isotope-resolved metabolomics. IL-17A treatment triggered downstream mitochondrial reactive oxygen species and HIF1α expression and resultant HPK proliferation, consistent with the observed elevation of these downstream effectors in the epidermis of patients with psoriasis. Pharmacological inhibition of HIF1α or reactive oxygen species reversed IL-17A-mediated glycolysis, glutaminolysis, lipid uptake, and HPK hyperproliferation. These results identify keratinocytes as important target cells of IL-17A and reveal its involvement in multiple downstream metabolic reprogramming pathways in human skin.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-17 , Psoríase , Espécies Reativas de Oxigênio , Células Cultivadas , Humanos , Interleucina-17/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Queratinócitos/citologia , Proliferação de Células/genética , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Regulação para Cima , Metabolismo dos Lipídeos , Psoríase/genética , Psoríase/metabolismo
4.
Cell ; 186(1): 80-97.e26, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608661

RESUMO

Glucose is a universal bioenergy source; however, its role in controlling protein interactions is unappreciated, as are its actions during differentiation-associated intracellular glucose elevation. Azido-glucose click chemistry identified glucose binding to a variety of RNA binding proteins (RBPs), including the DDX21 RNA helicase, which was found to be essential for epidermal differentiation. Glucose bound the ATP-binding domain of DDX21, altering protein conformation, inhibiting helicase activity, and dissociating DDX21 dimers. Glucose elevation during differentiation was associated with DDX21 re-localization from the nucleolus to the nucleoplasm where DDX21 assembled into larger protein complexes containing RNA splicing factors. DDX21 localized to specific SCUGSDGC motif in mRNA introns in a glucose-dependent manner and promoted the splicing of key pro-differentiation genes, including GRHL3, KLF4, OVOL1, and RBPJ. These findings uncover a biochemical mechanism of action for glucose in modulating the dimerization and function of an RNA helicase essential for tissue differentiation.


Assuntos
RNA Helicases DEAD-box , Glucose , Queratinócitos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glucose/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Humanos
5.
J Cell Mol Med ; 26(23): 5929-5942, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412036

RESUMO

Different growth factors can regulate stem cell differentiation. We used keratinocyte growth factor (KGF) to direct adipose-derived stem cells (ASCs) differentiation into keratinocytes. To enhance KGF bioavailability, we targeted KGF for collagen by fusing it to collagen-binding domain from Vibrio mimicus metalloprotease (vibrioCBD-KGF). KGF and vibrioCBD-KGF were expressed in Escherichia coli and purified to homogeneity. Both proteins displayed comparable activities in stimulating proliferation of HEK-293 and MCF-7 cells. vibrioCBD-KGF demonstrated enhanced collagen-binding affinity in immunofluorescence and ELISA. KGF and vibrioCBD-KGF at different concentrations (2, 10, and 20 ng/ml) were applied for 21 days on ASCs cultured on collagen-coated plates. Keratinocyte differentiation was assessed based on morphological changes, the expression of keratinocyte markers (Keratin-10 and Involucrin), and stem cell markers (Collagen-I and Vimentin) by real-time PCR or immunofluorescence. Our results indicated that the expression of keratinocyte markers was substantially increased at all concentrations of vibrioCBD-KGF, while it was observed for KGF only at 20 ng/ml. Immunofluorescence staining approved this finding. Moreover, down-regulation of Collagen-I, an indicator of differentiation commitment, was more significant in samples treated with vibrioCBD-KGF. The present study showed that vibrioCBD-KGF is more potent in inducing the ASCs differentiation into keratinocytes compared to KGF. Our results have important implications for effective skin regeneration using collagen-based biomaterials.


Assuntos
Diferenciação Celular , Fator 7 de Crescimento de Fibroblastos , Queratinócitos , Células-Tronco , Humanos , Colágeno , Colágeno Tipo I/genética , Fator 7 de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 119(35): e2006487119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998218

RESUMO

Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are "passengers" whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.


Assuntos
Evolução Clonal , Epiderme , Homeostase , Queratinócitos , Carcinogênese/genética , Evolução Clonal/genética , Epiderme/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Mutação , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética
7.
Proc Natl Acad Sci U S A ; 119(32): e2201328119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914175

RESUMO

Cellular quiescence is a state of reversible cell cycle arrest that is associated with tissue dormancy. Timely regulated entry into and exit from quiescence is important for processes such as tissue homeostasis, tissue repair, stem cell maintenance, developmental processes, and immunity. However, little is known about processes that control the mechanical adaption to cell behavior changes during the transition from quiescence to proliferation. Here, we show that quiescent human keratinocyte monolayers sustain an actinomyosin-based system that facilitates global cell sheet displacements upon serum-stimulated exit from quiescence. Mechanistically, exposure of quiescent cells to serum-borne mitogens leads to rapid amplification of preexisting contractile sites, leading to a burst in monolayer tension that subsequently drives large-scale displacements of otherwise motility-restricted monolayers. The stress level after quiescence exit correlates with the level of quiescence depth at the time of activation, and a critical stress magnitude must be reached to overcome the cell sheet displacement barrier. The study shows that static quiescent cell monolayers are mechanically poised for motility, and it identifies global stress amplification as a mechanism for overcoming motility restrictions in confined confluent cell monolayers.


Assuntos
Ciclo Celular , Homeostase , Queratinócitos , Ciclo Celular/fisiologia , Divisão Celular , Proliferação de Células , Humanos , Queratinócitos/citologia
8.
Cell Death Dis ; 13(7): 635, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864103

RESUMO

Defective execution of proteases and protease inhibitors that mediate abnormal signaling cascades is emerging as a key contributor to skin diseases, such as psoriasis. SerpinB7 is identified as a skin-specific endogenous protease inhibitor, but the role and underlying mechanism in psoriasis are poorly understood. Here we found that SerpinB7 is highly expressed in psoriatic keratinocytes of patients and imiquimod-induced psoriatic lesions in mice. SerpinB7-/- mice showed abnormal epidermal barrier integrity and skin architecture in homeostasis, and aggravated psoriatic lesion with inhibiting terminal differentiation and increasing inflammatory cells infiltration compared to SerpinB7+/+ mice after Imiquimod treatment. Mechanistically, SerpinB7 deficiency results in excessive proliferation and impaired differentiation, as well as increased chemokines and antimicrobial peptide expression in normal human epidermal keratinocyte and mouse primary keratinocyte. Transcriptomics and proteomics results showed that the SeprinB7 deficiency affected keratinocyte differentiation and proinflammatory cytokines, possibly by affecting the calcium ion channel-related proteins. Notably, we demonstrated that SerpinB7 deficiency prevented the increase in intracellular Ca2+ influx, which was partly eliminated by the intracellular Ca2+ chelator BAPTA-AM. Our findings first described the critical role of SerpinB7 in the regulation of keratinocyte differentiation and psoriatic microenvironment mediated via keratinocytes' intracellular calcium flux, proposing a new candidate for therapeutic targets in psoriasis.


Assuntos
Queratinócitos , Psoríase , Serpinas , Animais , Cálcio/metabolismo , Proliferação de Células , Epiderme/metabolismo , Humanos , Imiquimode , Queratinócitos/citologia , Camundongos , Psoríase/induzido quimicamente , Psoríase/metabolismo , Serpinas/genética , Serpinas/metabolismo
9.
Sci Rep ; 12(1): 11482, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798792

RESUMO

Epithelial development starts with stem cell commitment to ectoderm followed by differentiation to the basal keratinocytes. The basal keratinocytes, first committed in embryogenesis, constitute the basal layer of the epidermis. They have robust proliferation and differentiation potential and are responsible for epidermal expansion, maintenance and regeneration. We generated basal epithelial cells in vitro through differentiation of mouse embryonic stem cells (mESCs). Early on in differentiation, the expression of stem cell markers, Oct4 and Nanog, decreased sharply along with increased ectoderm marker keratin (Krt) 18. Later on, Krt 18 expression was subdued when cells displayed basal keratinocyte characteristics, including regular polygonal shape, adherent and tight junctions and Krt 14 expression. These cells additionally expressed abundant Sca-1, Krt15 and p63, suggesting epidermal progenitor characteristics. Using Map3k1 mutant mESCs and environmental dioxin, we examined the gene and environment effects on differentiation. Neither Map3k1 mutation nor dioxin altered mESC differentiation to ectoderm and basal keratinocytes, but they, individually and in combination, potentiated Krt 1 expression and basal to spinous differentiation. Similar gene-environment effects were observed in vivo where dioxin exposure increased Krt 1 more substantially in the epithelium of Map3k1+/- than wild type embryos. Thus, the in vitro model of epithelial differentiation can be used to investigate the effects of genetic and environmental factors on epidermal development.


Assuntos
Dioxinas , Queratinócitos , MAP Quinase Quinase Quinase 1 , Células-Tronco Embrionárias Murinas , Animais , Diferenciação Celular , Dioxinas/farmacologia , Células Epidérmicas , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , MAP Quinase Quinase Quinase 1/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Mutação
10.
Cells ; 11(13)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35805184

RESUMO

Skin is constantly exposed to injuries that are repaired with different outcomes, either regeneration or scarring. Scars result from fibrotic processes modulated by cellular physical forces transmitted by integrins. Fibronectin (FN) is a major component in the provisional matrix assembled to repair skin wounds. FN enables cell adhesion binding of α5ß1/αIIbß3 and αv-class integrins to an RGD-motif. An additional linkage for α5/αIIb is the synergy site located in close proximity to the RGD motif. The mutation to impair the FN synergy region (Fn1syn/syn) demonstrated that its absence permits complete development. However, only with the additional engagement to the FN synergy site do cells efficiently resist physical forces. To test how the synergy site-mediated adhesion affects the course of wound healing fibrosis, we used a mouse model of skin injury and in-vitro migration studies with keratinocytes and fibroblasts on FNsyn. The loss of FN synergy site led to normal re-epithelialization caused by two opposing migratory defects of activated keratinocytes and, in the dermis, induced reduced fibrotic responses, with lower contents of myofibroblasts and FN deposition and diminished TGF-ß1-mediated cell signalling. We demonstrate that weakened α5ß1-mediated traction forces on FNsyn cause reduced TGF-ß1 release from its latent complex.


Assuntos
Fibronectinas , Pele , Cicatrização , Animais , Adesão Celular , Células Cultivadas , Fibroblastos/citologia , Fibronectinas/genética , Fibronectinas/metabolismo , Integrina alfa5beta1/metabolismo , Queratinócitos/citologia , Camundongos , Oligopeptídeos/metabolismo , Pele/lesões , Fator de Crescimento Transformador beta1/metabolismo
11.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628310

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a detrimental premature aging disease caused by a point mutation in the human LMNA gene. This mutation results in the abnormal accumulation of a truncated pre-lamin A protein called progerin. Among the drastically accelerated signs of aging in HGPS patients, severe skin phenotypes such as alopecia and sclerotic skins always develop with the disease progression. Here, we studied the HGPS molecular mechanisms focusing on early skin development by differentiating patient-derived induced pluripotent stem cells (iPSCs) to a keratinocyte lineage. Interestingly, HGPS iPSCs showed an accelerated commitment to the keratinocyte lineage than the normal control. To study potential signaling pathways that accelerated skin development in HGPS, we investigated the WNT pathway components during HGPS iPSCs-keratinocytes induction. Surprisingly, despite the unaffected ß-catenin activity, the expression of a critical WNT transcription factor LEF1 was diminished from an early stage in HGPS iPSCs-keratinocytes differentiation. A chromatin immunoprecipitation (ChIP) experiment further revealed strong bindings of LEF1 to the early-stage epithelial developmental markers K8 and K18 and that the LEF1 silencing by siRNA down-regulates the K8/K18 transcription. During the iPSCs-keratinocytes differentiation, correction of HGPS mutation by Adenine base editing (ABE), while in a partial level, rescued the phenotypes for accelerated keratinocyte lineage-commitment. ABE also reduced the cell death in HGPS iPSCs-derived keratinocytes. These findings brought new insight into the molecular basis and therapeutic application for the skin abnormalities in HGPS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Fator 1 de Ligação ao Facilitador Linfoide , Progéria , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Progéria/genética , Progéria/metabolismo , Via de Sinalização Wnt
12.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35269567

RESUMO

Hyaluronan (HA), an essential component of the extracellular matrix of the skin, is synthesized by HA synthases (HAS1-3). To date, epidermal HA has been considered a major player in regulating cell proliferation and differentiation. However, a previous study reported that depletion of epidermal HA by Streptomyces hyaluronidase (St-HAase) has no influence on epidermal structure and function. In the present study, to further explore roles of epidermal HA, we examined effects of siRNA-mediated knockdown of HAS3, as well as conventional HA-depletion methods using St-HAase and 4-methylumbelliferone (4MU), on epidermal turnover and architecture in reconstructed skin or epidermal equivalents. Consistent with previous findings, HA depletion by St-HAase did not have a substantial influence on the epidermal architecture and turnover in skin equivalents. 4MU treatment resulted in reduced keratinocyte proliferation and epidermal thinning but did not seem to substantially decrease the abundance of extracellular HA. In contrast, siRNA-mediated knockdown of HAS3 in epidermal equivalents resulted in a significant reduction in epidermal HA content and thickness, accompanied by decreased keratinocyte proliferation and differentiation. These results suggest that HAS3-mediated HA production, rather than extracellularly deposited HA, may play a role in keratinocyte proliferation and differentiation, at least in the developing epidermis in reconstructed epidermal equivalents.


Assuntos
Hialuronan Sintases/genética , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/farmacologia , Himecromona/farmacologia , Queratinócitos/citologia , Proteínas de Bactérias/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Streptomyces/enzimologia
13.
Microscopy (Oxf) ; 71(3): 152-160, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35289919

RESUMO

Retinoic acid (RA) plays an important role in epithelial homeostasis and influences the morphology, proliferation, differentiation and permeability of epithelial cells. Mouse keratinocytes, K38, reconstituted non-keratinized stratified epithelium in three-dimensional (3D) cultures with serum, which contains retinol (a source of RA), but the morphology was different from in vivo epithelium. The formed epithelium was thick, with loosened cell-cell contacts. Here, we investigated whether the inhibition of RA receptor (RAR)/retinoid X receptor (RXR)-mediated signaling by an RXR antagonist, HX 531, improved K38 3D cultures in terms of morphology and intercellular junctions. The epithelium formed by 0.5 µM HX531 was thin, and the intercellular space was narrowed because of the restoration of the layer-specific distribution of desmoglein (DSG)-1, DSG3 and plakoglobin (PG). Moreover, the levels of desmosomal proteins and tight junction proteins, including DSG1, DSG2, DSG3, PG, claudin (CLDN)-1 and CLDN4 increased, but the adherens junction protein, E-cadherin, did not show any change. Furthermore, CLDN1 was recruited to occludin-positive cell-cell contacts in the superficial cells and transepithelial electrical resistance was increased. Therefore, K38 3D cultures treated with 0.5 µM HX531 provides a useful in vitro model to study intercellular junctions in the non-keratinized epithelium.


Assuntos
Caderinas de Desmossomos , Queratinócitos , Receptores X de Retinoides , Animais , Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Técnicas de Cultura de Células em Três Dimensões , Caderinas de Desmossomos/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Permeabilidade , Receptores X de Retinoides/antagonistas & inibidores , Receptores X de Retinoides/metabolismo
14.
Skin Pharmacol Physiol ; 35(4): 196-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35231918

RESUMO

INTRODUCTION: Psoriasis is an immune-mediated polygenic inflammatory skin disease in which keratinocyte proliferation is an important mechanism. The study investigated the role and regulatory relationship between lncRNA XIST and miR-338-5p in psoriatic patients and cell models. METHODS: Serum samples were collected from 55 psoriasis patients. HaCaT was recruited for the cell experiments, and induced by M5 cytokines to mimic psoriasis in vitro. XIST and miR-338-5p levels were detected via qRT-PCR. Cell viability under different treatments was evaluated using CCK-8. ELISA was applied to measure the concentration of inflammatory cytokines. The regulatory relationship was confirmed using luciferase reporter gene assay. RESULTS: Serum XIST was elevated in patients with psoriasis and can distinguish the psoriasis patients from healthy controls according to the receiver operating characteristic curve. A high level of XIST was positively correlated with the PASI score and serum tumor necrosis factor-alpha (TNF-α), interleukin-17A [IL-17A], and IL-22 concentrations in psoriasis patients. XIST silencing suppressed M5-induced keratinocyte proliferation and restrained the discharge of inflammatory cytokines (TNF-α, IL-17A, IL-22) and chemokines (CXCL1, CXCL8, CCL20). XIST can sponge miR-338-5p, and miR-338-5p downregulation abolished the inhibitory effect of XIST silencing on cell proliferation and inflammation. miR-338-5p was highly expressed in the clinical serum samples from psoriasis patients. The target relationship between miR-338-5p and IL-6 was proved. CONCLUSION: LncRNA XIST is highly expressed in the serum of patients with psoriasis, and was positively correlated with disease severity and inflammation. XIST may regulate keratinocyte proliferation and inflammation via regulating miR-338-5p/IL-6 axis.


Assuntos
Queratinócitos , MicroRNAs , Psoríase , RNA Longo não Codificante , Proliferação de Células , Humanos , Inflamação/genética , Interleucina-17 , Interleucina-6 , Queratinócitos/citologia , MicroRNAs/genética , Psoríase/genética , RNA Longo não Codificante/genética , Fator de Necrose Tumoral alfa
15.
PLoS One ; 17(2): e0263083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113915

RESUMO

In order to advance models of human oral mucosa towards routine use, these models must faithfully mimic the native tissue structure while also being scalable and cost efficient. The goal of this study was to develop a low-cost, keratinized human gingival model with high fidelity to human attached gingiva and demonstrate its utility for studying the implant-tissue interface. Primary human gingival fibroblasts (HGF) and keratinocytes (HGK) were isolated from clinically healthy gingival biopsies. Four matrices, electrospun collagen (ES), decellularized dermis (DD), type I collagen gels (Gel) and released type I collagen gels (Gel-R)) were tested to engineer lamina propria and gingiva. HGF viability was similar in all matrices except for Gel-R, which was significantly decreased. Cell penetration was largely limited to the top layers of all matrices. Histomorphometrically, engineered human gingiva was found to have similar appearance to the native normal human gingiva except absence of rete pegs. Immunohistochemical staining for cell phenotype, differentiation and extracellular matrix composition and organization within 3D engineered gingiva made with electrospun collagen was mostly in agreement with normal gingival tissue staining. Additionally, five types of dental material posts (5-mm diameter x 3-mm height) with different surface characteristics were used [machined titanium, SLA (sandblasted-acid etched) titanium, TiN-coated (titanium nitride-coated) titanium, ceramic, and PEEK (Polyetheretherketone) to investigate peri-implant soft tissue attachment studied by histology and SEM. Engineered epithelial and stromal tissue migration to the implant-gingival tissue interface was observed in machined, SLA, ceramic, and PEEK groups, while TiN was lacking attachment. Taken together, the results suggest that electrospun collagen scaffolds provide a scalable, reproducible and cost-effective lamina propria and 3D engineered gingiva that can be used to explore biomaterial-soft tissue interface.


Assuntos
Adesão Celular , Colágeno/química , Implantes Dentários/estatística & dados numéricos , Fibroblastos/fisiologia , Gengiva/fisiologia , Queratinócitos/fisiologia , Titânio/química , Fibroblastos/citologia , Gengiva/citologia , Humanos , Queratinócitos/citologia , Teste de Materiais , Propriedades de Superfície
16.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163066

RESUMO

Paclitaxel is a microtubule-stabilizing chemotherapeutic agent approved for the treatment of ovarian, non-small cell lung, head, neck, and breast cancers. Despite its beneficial effects on cancer and widespread use, paclitaxel also damages healthy tissues, including the skin. However, the mechanisms that drive these skin adverse events are not clearly understood. In the present study, we demonstrated, by using both primary epidermal keratinocytes (NHEK) and a 3D epidermis model, that paclitaxel impairs different cellular processes: paclitaxel increased the release of IL-1α, IL-6, and IL-8 inflammatory cytokines, produced reactive oxygen species (ROS) release and apoptosis, and reduced the endothelial tube formation in the dermal microvascular endothelial cells (HDMEC). Some of the mechanisms driving these adverse skin events in vitro are mediated by the activation of toll-like receptor 4 (TLR-4), which phosphorylate transcription of nuclear factor kappa B (NF-κb). This is the first study analyzing paclitaxel effects on healthy human epidermal cells with an epidermis 3D model, and will help in understanding paclitaxel's effects on the skin.


Assuntos
Citocinas/metabolismo , Epiderme/metabolismo , Queratinócitos/citologia , Paclitaxel/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epiderme/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Fosforilação/efeitos dos fármacos
17.
Sci Rep ; 12(1): 2152, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140310

RESUMO

Long-term exposure to air pollution has been associated with the development of some inflammatory processes related to skin. The goal of modern medicine is the development of new products with antiflammatory action deriving from natural sources to improve environmental and economic sustainability. In this study, two different humic acids (HA) were isolated from from lignite (HA-LIG) and composted artichoke wastes (HA-CYN) and characterized by infrared spectrometry, NMR spectroscopy, thermochemolysis-GC/MS, and high-performance size-exclusion chromatography (HPSEC), while their antiflammatory activity was evaluated on HaCaT cells. Spectroscopic results showing the predominance of apolar aliphatic and aromatic components in HA-LIG, whereas HA-CYN revealed a presence of polysaccharides and polyphenolic lignin residues. The HA application on human keratinocyte pre-treated with Urban Dust revealed a general increase of viability suggesting a protective effect of humic matter due to the content of aromatic, phenolic and lignin components. Conversely, the gene expression of IL-6 and IL-1ß cytokines indicated a significant decrease after application of HA-LIG, thus exhibiting a greater antiflammatory power than HA-CYN. The specific combination of HA protective hydrophobic components, viable conformational arrangements, and content of bioactive molecules, suggests an innovative applicability of humic matter in dermatology as skin protectors from environmental irritants and as antiflammatory agents.


Assuntos
Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/farmacologia , Carvão Mineral , Compostagem , Substâncias Húmicas , Anti-Inflamatórios não Esteroides/química , Sobrevivência Celular , Cromatografia em Gel , Carvão Mineral/análise , Cromatografia Gasosa-Espectrometria de Massas , Células HaCaT , Humanos , Substâncias Húmicas/análise , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Queratinócitos/citologia , Espectroscopia de Ressonância Magnética
18.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163819

RESUMO

While blue LED (b-LED) light is increasingly being studied for its cytotoxic activity towards bacteria in therapy of skin-related infections, its effects on eukaryotic cells plasticity are less well characterized. Moreover, since different protocols are often used, comparing the effect of b-LED towards both microorganisms and epithelial surfaces may be difficult. The aim of this study was to analyze, in the same experimental setting, both the bactericidal activity and the effects on human keratinocytes. Exposure to b-LED induced an intense cytocidal activity against Gram-positive (i.e, Staphylococcus aureus) and Gram-negative (i.e., Pseudomonas aeruginosa) bacteria associated with catheter-related infections. Treatment with b-LED of a human keratinocyte cell line induced a transient cell cycle arrest. At the molecular level, exposure to b-LED induced a transient downregulation of Cyclin D1 and an upregulation of p21, but not signs of apoptosis. Interestingly, a transient induction of phosphor-histone γ-H2Ax, which is associated with genotoxic damages, was observed. At the same time, keratinocytes underwent a transient epithelial to mesenchymal transition (EMT)-like phenotype, characterized by E-cadherin downregulation and SNAIL/SLUG induction. As a functional readout of EMT induction, a scratch assay was performed. Surprisingly, b-LED treatment provoked a delay in the scratch closure. In conclusion, we demonstrated that b-LED microbicidal activity is associated with complex responses in keratinocytes that certainly deserve further analysis.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos da radiação , Queratinócitos/citologia , Luz/efeitos adversos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antígenos CD/metabolismo , Caderinas/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Síndrome de Down , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Células HaCaT , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Viabilidade Microbiana/efeitos da radiação , Pseudomonas aeruginosa/efeitos da radiação , Fatores de Transcrição da Família Snail/metabolismo , Staphylococcus aureus/efeitos da radiação
19.
Sci Rep ; 12(1): 3184, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210511

RESUMO

Cryopreserved allogeneic cultured epidermis (CE) is used for treating second-degree burn wounds and diabetic foot ulcers; however, the need for cryopreservation limits its use. We have previously reported that CE accelerates wound healing irrespective of its viability and hypothesized that dehydrated CEs lacking living cells may act as an effective wound dressing. We prepared dried CE and investigated its morphological and physical properties and wound-healing effects and compared them with those of cryopreserved CE. Hematoxylin-eosin staining, immunostaining for basement membrane, and electron microscopy revealed that the morphologies of dried CE and cryopreserved CE were comparable and that the membrane structure was not damaged. The breaking strength, modulus of elasticity, and water permeability of dried CE were comparable with those of the cryopreserved CE. Furthermore, the levels of various active cytokines and chemokines in dried CE were comparable with those in cryopreserved CE. Dried CE applied to skin defect in diabetic mice significantly reduced the wound area and increased the new epithelium length 4 and 7 days after implantation, similar to that observed for cryopreserved CE. Consequently, dried CE had similar morphological and physical properties and wound-healing effects compared with those of cryopreserved CE and can be a physiological and versatile wound-dressing.


Assuntos
Células Epidérmicas/transplante , Epiderme/transplante , Queratinócitos/transplante , Pele/patologia , Cicatrização , Animais , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Criopreservação , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Células Epidérmicas/citologia , Liofilização , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo
20.
Cell Mol Life Sci ; 79(3): 157, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218417

RESUMO

Olfactomedin-4 (OLFM4) is an olfactomedin-domain-containing glycoprotein, which regulates cell adhesion, proliferation, gastrointestinal inflammation, innate immunity and cancer metastasis. In the present study we investigated its role in skin regeneration. We found that OLFM4 expression is transiently upregulated in the proliferative phase of cutaneous wound healing in humans as well as in mice. Moreover, a significant increase in OLFM4 expression was detected in the skin of lesional psoriasis, a chronic inflammatory disease characterized by keratinocyte hyperproliferation. In vitro experiments demonstrated that OLFM4 selectively stimulated keratinocyte proliferation and increased both keratinocyte and fibroblast migration. Using proteotranscriptomic pathway analysis we revealed that transcription factors POU5F1/OCT4 and ESR1 acted as hubs for OLFM4-induced signalling in keratinocytes. In vivo experiments utilizing mouse splinted full-thickness cutaneous wound healing model showed that application of recombinant OLFM4 protein can significantly improve wound healing efficacy. Taken together, our results suggest that OLFM4 acts as a transiently upregulated inflammatory signal that promotes wound healing by regulating both dermal and epidermal cell compartments of the skin.


Assuntos
Proliferação de Células/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Movimento Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fator 3 de Transcrição de Octâmero/metabolismo , Psoríase/metabolismo , Psoríase/patologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...